UAV-based Multispectral & Thermal dataset for exploring the diurnal variability, radiometric & geometric accuracy for precision agriculture
DOI:
https://doi.org/10.18174/odjar.v6i0.16317Abstract
To explore the diurnal variations, radiometric and geometric accuracy of UAV-based data for precision agriculture, a comprehensive dataset was created in a one-day field campaign (21 June 2017). The multi-sensor data set covers wheat, barley & potato experimental fields, located in Wageningen University and Research (WUR) farm maintained by Unifarm. UAV-based images were collected with several sensors over the experimental area, starting from 7:25am and ending at 20:00pm local solar time. The dataset consists of images collected by 9 flights with senseFly MSP4C, 9 with Parrot Sequoia, 2 with Slant Range P3, 5 with DJI Zenmuse X3 NIR, 4 with the senseFly Thermo-map and 1 with the RGB Sony WX-220. Additionally, validation measurements at radiometric calibration plates and plant sample locations were taken with a Cropscan handheld spectrometer and a tec5 Handyspec spectrometer. The dataset consists of the validation measurements, the raw images and the processed orthomosaics (both with and without geometric correction).
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.