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Abstract:  The simulated data set described in this paper was created with an ensemble of nine different 
crop models: HERMES (HE), Simplace<Lintul5,Slim3, FAO-56 ET0> (L5), SiriusQuality (SQ), MONICA 
(MO), Sirius2014 (S2), FASSET (FA), 4M (4M), SSM (SS), DSSAT-CSM IXIM (IX). Simulations were 
performed for grain maize (six models) and winter wheat (eight models) under diverse conditions over 
agricultural land areas of the EU-27 at a 25 x 25 km spatial resolution. Simulations were drawn from 
combinations of three representative concentration pathways and climate outputs from five general 
circulation models for time periods 2040-2069 and 2070-2099. Historical climate data was the basis for 
simulation years 1980-2010 and considered as a baseline. Simulation results can be used to analyze 
crop responses to changing climatic variables. This data paper describes the creation, motivation and 
format of the simulation results to enable reuse of the data set. It also offers some possible further uses 
of the dataset in other contexts.  
 
Keywords: crop modelling, climate change impacts, European Union, maize, wheat, heat stress, 
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1 BACKGROUND: The data set consists of simulations from historical (1980-2010) and scenario 
periods (2040-2069 and 2070-2099) for six grain maize (MZ) and eight winter wheat (WW) process-
based models. The models were applied on a spatial grid of 25 km resolution across the EU-27 (Austria, 
Belgium, Bulgaria, Cyprus, Denmark, Finland, France, Germany, Greece, Ireland, Italy, Luxembourg, 
Malta, Netherlands, Portugal, Romania, Spain, Sweden, United Kingdom, Czech Republic, Estonia, 
Hungary, Latvia, Lithuania, Poland, Slovenia, Slovak Republic). The original purpose of this data set 
was to analyze the drivers of historical yield variability at both the national and subnational (NUTS2) 
levels, as well as the drivers of yield change under climate change for wheat and maize across Europe 
(Webber et al. 2018a). These two important food security crops are interesting to compare, as they have 
contrasting photosynthesis pathways (C3 and C4), a major determining factor of crop response to a 
change in ambient CO2 levels. The two crops also differ in their main growing season (autumn versus 
spring sown for winter wheat and maize, respectively). A detailed description of the simulations, results 
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and discussion from this analysis are reported in Webber et al. (2018a). The data set described in this 
paper can be accessed from doi: 10.4228/ZALF.DK.88. 
 
2 DATA CREATION PROCESS: A multi-model ensemble was used in this study to capture uncertainty 
associated with modeled processes and associated parameterizations. The nine crop models in the 
ensemble were: HERMES (HE), Simplace<Lintul5,Slim3, FAO-56 ET0> (L5), SiriusQuality (SQ), 
MONICA (MO), Sirius2014 (S2), FASSET (FA), 4M (4M), SSM (SS), DSSAT-CSM IXIM (IX). Models 
were selected based on their ability to simulate heat and drought stresses, as well as the interest of the 
respective modelling groups to participate in the study. Six of the models were also able to simulate crop 
canopy temperature (FA, L5, HE, SS, SQ and S2; see Table 1) allowing for the interaction of high 
temperature, drought stress and CO2.  More detailed model descriptions are provided in key references 
(Table 1) and in the SI materials of Webber et al. (2018a, b). A common protocol was defined and used 
by all modelers to standardize the modeling procedure, climate and soil data inputs as well as crop 
management practices. The complete protocol is provided in the supplemental methods of Webber et 
al. (2018a). All models were applied to the same spatial extent of EU-27 (Fig. 1), for 8,084 grids cells of 
25 x 25 km resolution where soil data indicated at least a 40 cm rooting depth (see Figure 1). Data for 
sowing, anthesis and harvest dates were sourced from Eurostat1, aggregated to 13 environmental zones 
and resampled to the simulation grid cells. Soil data were sourced from the JRC European Soil Data 
Portal.2  
 
Table 1: Overview of models and key settings, including crop(s) simulated (winter wheat, grain 
maize, or both), processes affected by elevated CO2 (canopy temperature, transpiration and/or 
radiation use efficiency, RUE) and the approach to simulate canopy temperature (CT). The three CT 
approaches include: empirical (EMP), energy balance assuming neutral stability (EBN) or energy 
balance correcting for atmospheric stability conditions (EBSC). ‘NA’ indicates that CT was not 
simulated. 
Model name (abrv) Crop Processes affected by 

CO2 
CT Key references 

HERMES (HE) both canopy temperature, 
transpiration and RUE  

EBN  Kersebaum 2017 

Simplace<Lintul5,Slim
3, FAO-56 ET0> (L5) 

both canopy temperature, 
transpiration and RUE 

EBSC Webber et al. 
2016 

SiriusQuality (SQ) winter 
wheat 

RUE EBN Martre and 
Dambreville 2018 

MONICA (MO) both transpiration and RUE NA Nendel et al. 
2011 

Sirius2014 (S2) winter 
wheat 

RUE EBN Jamieson et al. 
1998 

FASSET (FA) both canopy temperature, 
transpiration, RUE 

EMP Olesen et al. 
2002 

4M (4M) both transpiration and RUE NA Fodor et al. 2014 
SSM (SS) winter 

wheat 
canopy temperature, 
transpiration, RUE 

EBN Soltani et al. 2013 

DSSAT-CSM IXIM 
(IX) 

grain 
maize 

transpiration and RUE NA Lizaso et al. 2017 

 
 
 

 
1 https://ec.europa.eu/jrc/en/mars 
2 https://esdac.jrc.ec.europa.eu/resource-type/european-soil-database-soil-properties 
 

https://www.doi.org/10.4228/ZALF.DK.88
https://esdac.jrc.ec.europa.eu/resource-type/european-soil-database-soil-properties
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Figure 1. Maps of average yield (kg/ha) for winter wheat for time period 2 (2040-2069), assuming 
elevated CO2 levels (429, 499 and 571 ppm, for RCP2.6, 4.5 and 8.5, respectively) for each GCM (rows) 
and RCP (columns). These maps are based on simulations carried out by the FA model under rainfed 
conditions, including heat and drought stress, corresponding to Treatment 6 (T6) (see Figure 3). 
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2.1 Climate inputs: Observed meteorological data for the baseline period (period “0”= 1980-2010) were 
extracted from the Crop Growth Monitoring System (CGMS) of the Joint Research Centre (JRC) 
archive3. The JRC site-specific daily weather data is based on more than 3000 sites across Europe. The 
data is representative of agricultural land use and is interpolated to a regular grid at a spatial resolution 
of 25 km. Climate scenario data were constructed using an enhanced delta method (Ruane et al. 2015) 
for two periods (periods:“2”= 2040-2069 and “3”= 2070-2099). For each period, three representative 
concentration pathways (RCP; 2.6, 4.5, or 8.5) were coupled with five GCMs (GFDL-CM3, GISS-E2-R, 
HadGEM2-ES, MIROC5, and MPI-ESM-ER). Only two GCMs were available for RCP 2.6 (HadGEM2-
ES and MPI-ESM-MR), whereas all five GCMs were available for RCP 4.5 and RCP 8.5 (Fig.1 and Fig. 
2). For each climate scenario, GCM and time period combination, simulations were conducted twice: 
the first set with atmospheric CO2 concentration set at ambient levels corresponding to the historical 
baseline period (360 ppm) and a second set with elevated CO2 (Fig. 2). Elevated CO2 concentrations 
were determined based on the associated RCP and time period (429 and 442 ppm for RCP2.6 time 
periods 2 and 3, 499 and 532 ppm for RCP4.5 time periods 2 and 3, 571 and 801 ppm for RCP8.5 and 
time periods 2 and 3, respectively). For each scenario and time period, concentrations were based on 
values listed in the 2013 IPCC report (IPCC 2013). From these values, a central-year concentration, 
based on projections for the middle of the range of years, was assigned to each time period (see 
McDermid et al. 2015). As RCP 2.6 and 4.5 consider CO2 mitigation measures, the increase in CO2 
concentration from time period 2 to 3 for these two scenarios is less than that for RCP 8.5. In total, there 
were 49 combinations used in the study (see Figure 2). The original climate data used in the study is 
available from doi 10.4228/ZALF.DK.59. An updated climate dataset that corrects for temperatures at 
high elevations is available at doi 10.4228/ZALF.DK.94. A detailed description of the creation of the 
climate data can be found in Fronzek et al., 2018b. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Simulations were conducted for 49 sets of climate and CO2 concentration data. Climate data 
consist of 48 sets corresponding to climate scenarios defined by combinations of global climate models  
(GCM), representative concentration pathways (RCP), time period (2= 2040-2069, 3=2070-2099), and 
CO2 level. One simulation set was conducted for a baseline climate (period = 0, 1980-2010; 
CO2=360ppm, *GCM=NA and RCP=NA correspond to the fact that no GCM or RCP is applicable for 
observational historical data used in this study) 
 
2.2 Soil inputs: The original soil data was sourced from the JRC European Soil Data Portal4 at 1 km 
resolution and included textural classes, depth available to roots, total available water content (TAWC), 
bulk density (BD), and soil organic carbon (SOC). To select for grids under current agricultural land use 
within the EU-27, soil layers were resampled to match the 250 x 250 m resolution Corine 2006 Land 
Cover Map Version 175. Since data for Greece was not available from this map, the Corine 2000 Land 
Cover v16 map was used for Greece. Further, only soils with a depth of 40 cm or greater were included. 

 
3 https://ec.europa.eu/jrc/en/mars 
4 https://esdac.jrc.ec.europa.eu/resource-type/european-soil-database-soil-properties 
5 http://www.eea.europa.eu/data-and-maps/data/ds_resolveuid/a47ee0d3248146908f72a8fde9939d9d 
 

https://doi.org/10.4228/ZALF.DK.59
https://doi.org/10.4228/ZALF.DK.94
https://ec.europa.eu/jrc/en/mars
http://www.eea.europa.eu/data-and-maps/data/ds_resolveuid/a47ee0d3248146908f72a8fde9939d9d
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These data were used to derive estimates of soil water at saturation, field capacity and permanent wilting 
point, needed as inputs for the crop models.  
 
2.3 Phenology and crop management inputs: Phenology observations of sowing, emergence, 
anthesis and harvest or maturity dates from the JRC AgriCast4 database6 were used by the modelling 
groups to calibrate phenology parameters with the historical weather data. Modelling groups calibrated 
their respective phenology parameters (eg, thermal times) to match observed anthesis and maturity 
dates. The resulting parameters for each model were kept constant for subsequent scenario simulations, 
with the explicit assumption that there was no adaption in crop variety.  

 
2.4 Treatments: For each of the 49 climate combinations, two crops (grain maize, MZ, and winter wheat, 
WW) and up to six treatments (Fig. 3) were simulated by the models, dependent on the respective 
model’s ability to simulate both crops and each treatment. The treatments were numbered T1 to T6 and 
defined by combinations of irrigation status (full or rain), heat stress (on or off) and heat by drought 
interaction (on or off) (Fig. 3). The interaction of heat and drought stresses were estimated using 
simulated canopy temperatures. Models used different methods to simulate canopy temperature (Table 
1), with detailed descriptions in Table 2 of the supplementary materials of Webber et al. 2018a. As 
treatments T3 and T6 used canopy temperature, they were only simulated by models that consider 
canopy temperature (FA, L5, HE, SS, SQ, and S2)  
 

 

3 FILE FORMAT AND ANNOTATION: All files in the data set are comma separated value (csv) files 
compressed into a gzip format. Each file comprises the outputs for all crops (MZ, WW), treatments 
(TrtNo), scenarios by GCMs combination (sce), CO2 concentrations (CO2), periods (period) and year 
carried out by a single model (Model) and for a single simulation grid and is named as 
“EU_HS_2digitModelCode_row_col.csv.gz”. As an example, the file with model outputs from model 4M 
with input data associated with grid cell in row 32 and column 125 would be named 
EU_HS_4M_32_125.csv.gz (Table 2). Additionally a redundant identifier is defined for the combination 
of scenario, GCM, and CO2 concentration (ClimPerCO2_ID), which are further defined in the 
Supplemental Materials of Webber et al. 2018a. Definitions and units for the variables found in the 
headers of each file are listed in doi 10.4228/ZALF.DK.88 and given (from top to bottom) in the same 
order as they appear in the files (from left to right). Header and variables are the same in every file of 
the data set. Missing values in the files are denoted as “NA” (Table 2). Data was annotated using 
metadata standards defined by DataCite 4.1 (DataCite 2017). 
 

 
6 https://ec.europa.eu/jrc/en/mars 
 

Figure 3. Six treatments were simulated, defined by irrigation status (full irrigation (Full) or rainfed 
(Rain)), stress type considered (heat or drought) and whether stress interactions were considered by 
using air (Tair) or canopy temperatures (Tcanopy, Tc). Treatments using canopy temperature (T3 and T6) 
were only simulated by 6 of the models (FA, L5, HE, SS, SQ, and S2).  

https://www.doi.org/10.4228/ZALF.DK.88
https://ec.europa.eu/jrc/en/mars
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Table 2: Example of the information available in the data set. Model 4M used as an example. File 
names are given in format ‘EU_HS_4M_row_col.csv.gz’. First rows with bolded text are the headers. 
Model= 2-digit model code, row_col= grid cell identifier, Crop = MZ or WW, ClimPerCO2ID= unique 
identifier for 48 period gcm_rcp CO2 levels, period= period identifier (0, 2, 3), sce = GCM/RCP 
combination, CO2= CO2 level, TrtNo= 2-digit simulation treatment identifier, Irrigation= irrigation 
status (Full, Rain), ProdCase= stress status(Pot, HL_air, see also Figure 3), Year= year of harvest, 
Yield =Grain yield**, AntDOY= anthesis julian day (YYYYJJJ), MatDOY= maturity Julian day 
(YYYYJJJ), GNumber= Grain number per unit area, Biom-an= anthesis total above ground biomass, 
Biom-ma= maturity total above ground biomass, MaxLAI =maximum LAI, WDrain= cumulative water 
drained beneath max rooted zone*, CumET= cumulative crop evapotranspiration*,  SoilAvW= final 
soil water content in maximum rooted zone**, Runoff= cumulative water runoff*, Transp= cumulative 
crop transpiration*, Evap= cumulative soil water evaporation*, CroN-an = Crop N content***, Crop-
ma= Crop N content**, GrainN= Grain N content*, ET0= cum. Reference crop evapotranspiration*, 
SowDOY= Julian day of year at sowing (YYYYJJJ), EmergDOY= Julian day at emergence 
(YYYYJJJ), TcMaxAve= average daily maximum canopy temperature*, TmaxAve= average daily 
maximum air temperature*. *between sowing and maturity,**at maturity, ***at anthesis. 
 
Model row_col Crop ClimPerCO2ID period sce CO2 TrtNo Irrigation ProdCase Year 

4M 32_125 MZ C01 0 0.0 360 T1 Full Pot 1981 

4M 32_125 MZ C01 0 0.0 360 T1 Full Pot 1982 

Yield AntDOY MatDOY GNumber Biom.an Biom.ma MAXLAI WDrain CumET SoilAvW Runoff 

16556 189 270 NA 9628 31194 5.91 0 164 2 0 

12438 192 268 NA 7113 23531 4.40 0 198 11 0 

Transp Evap CroN.an CroN.ma GrainN Et0 SowDOY EmergDOY TcMaxAve TMaxAve  
145 20 NA NA NA 1069 114 119 NA 27.3  

140 58 NA NA NA 941 114 121 NA 25.5  

 
4 OPPORTUNITIES FOR REUSE: The data set may serve as the basis for further analysis of maize 
and wheat average yields and inter-annual variability, as well as crop response to climate and elevated 
CO2 across Europe. Beyond quantifying and identifying impacts on yield, the dataset could also be used 
to assess changing water use and water demand under both rainfed and irrigated conditions. As such, 
it could inform risk assessments and irrigation design studies. Further, the dataset could potentially be 
linked with remote sensing data to understand patterns observed in soil-water, surface temperature or 
leaf area related indices, and how they may be affected by climate change. It also has the potential to 
act as a benchmark for more detailed and localized adaptation studies by providing European scale 
trends against which regional changes can be compared.  
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